Ce este un triunghi echilateral, este cel mai ușor de a găsi răspunsuri la cele mai bune întrebări
Triangle - un poligon cu 3 laturi (sau unghiuri cu 3). Laturile triunghiului sunt adesea desemnate litere malehankih care corespund unei majusculă care desemnează partea de sus inversă.
triunghi ascutitunghic este numit un triunghi în care toate cele trei unghiuri sunt acute.
triunghi obtuz este numit un triunghi în care unul dintre unghiurile este obtuz.
triunghi dreptunghic este numit un triunghi în care unul dintre colțurile unei drepte, cu alte cuvinte, egal cu 90 °; laturile a, b, formând un unghi drept, denumit picioare; partea C, unghiul drept invers este numit ipotenuzei.
triunghi isoscel numit triunghi în care două dintre laturile sale sunt egale (a = c); laturile egale sunt numite lateral. Cea de a treia latură a triunghiului este numit de bază.
Un triunghi echilateral este numit un triunghi în care toate laturile sale sunt egale (a = b = c). În cazul unui triunghi nu este egal cu nici una dintre laturile sale (abc), atunci acesta este un triunghi scalen.
Principalele caracteristici ale triunghiuri
În orice triunghi:
Semne de egalitate de triunghiuri
Triunghiurile sunt egale, respectiv, în cazul în care au:
Semne de egalitate de triunghiuri drepte
Două triunghiuri unghi drept sunt congruente, dacă se efectuează una dintre următoarele criterii:
Vysotatreugolnika - este perpendiculară a scăzut de la partea de sus a cel puțin o parte, în direcția opusă (sau continuarea acesteia). Această parte se numește baza triunghiului. Trei înălțime triunghi se intersectează întotdeauna la un punct numit orthocenter triunghiului.
Orthocenter unui triunghi acut este localizat în interiorul unui triunghi, The orthocenter și triunghiul obtuz - exterior; orthocenter triunghi coincide cu vârful unghiului drept.
Median - un segment care conectează toate vârful triunghiului de pe partea din spate la mijloc. Cele trei medianele ale unui triunghi se intersectează la un moment dat, întotdeauna se află în interiorul triunghiului și este centrul său de masă. Acest punct median divide fiecare în 2 raportul: 1, pornind de la partea de sus.
Bisectoare - un bisectoare segment din vârful la punctul de trecere din spate. Trei Bisectors ale unui triunghi se intersectează la un moment dat, se află întotdeauna în interiorul triunghiului este centrul cercului inscris. Bisector împarte latura opusă în părți proporționale cu laturile adiacente.
Mediana perpendiculara - este perpendiculară trasată de la punctul de mijloc al segmentului (lateral). Trei mijlocul triunghiului perpendiculare se intersectează la un moment dat, este centrul cercului.
Într-un triunghi-acută, acest punct se află în interiorul triunghiului, într-un obtuz - exterior, într-o formă dreptunghiulară - în mijlocul ipotenuzei. Orthocenter, centrul de masă, centru de circumscrisă și centrul cercului înscris coincid doar într-un triunghi echilateral.
Unghiulară-pătrat triunghi ipotenuza lungime egală cu suma pătratelor lungimilor picioarelor.
Confirmarea axioma pitagoreice
Noi construim o AKMB pătrat, folosind AB ca partea ipotenuzei. Apoi, în continuare parte a unui triunghi ABC dreapta, astfel încât să se obțină CDEF pătrat, a cărui latură este egală cu a + b. Este acum clar că o suprafață pătrată CDEF este (a + b) 2. Pe de altă parte, această zonă este suma zonelor de patru triunghiuri unghi drept și AKMB pătrat, cu alte cuvinte,
c 2 + 4 (ab / 2) = c 2 2 + ab,
c 2 2 + ab = (a + b) 2,
raport de aspect într-un triunghi aleatoare
În cazul general (pentru triunghi aleatoare), avem:
c 2 = a + b 2 2 - 2 ab * cos C,
unde C - unghiul dintre laturile a și b.
În plus, pe New-Best.com:
Sursa de material Site-ul www.genon.ru